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1 INTRODUCTION

Mobile devices are used in countless user contexts, which
varies with the type of the user and the situation. To provide
the best user experience in mobile device use, the interaction
method should be aware of the user’s context and adapt to it
in real-time. Thus, it is important to know the user context
on mobile devices. Especially, for common smartphones, the
hand posture of the user should be considered as a critical
factor in user context, since touching is the most dominant
interaction method. For instance, iGrasp [3] devised a hand
posture-aware keyboard interface and showed its effective-
ness by reducing 42% of typing time in its evaluation, which
reveals the importance of hand posture awareness. However,
our smartphones yet do not provide the user’s hand posture
context in real-time, thus these kinds of interfaces cannot be
adapted accordingly.

To address this problem, several works have been pro-
posed. Some of them [3, 7, 8] used additional capacitive touch
sensors to sense how the users grab mobile devices. However,
using external devices incurs additional costs and inconve-
niences to users. There have also been some works that
overcame this limitation [6], which predict the hand posture
by sensing the motion of the device and the touch of the user.
Nonetheless, it is based on the user’s already-taken actions
including swipe and touch, thus there would be some time
gap between the user’s actual hand posture change and the
prediction by the application, which can possibly degrade
the user’s QoE.

So we present an application in this study to track the
user’s hand posture, solving the limitations of the prior
works. To do that, our application had to use built-in sensors
to eliminate the cost and inconvenience of the user, and be
able to immediately track the user’s hand posture without
time lag. For those purposes, we designed GraspTracker, with
the key idea of using the differences in amplitude change at
each frequency in the sound propagated through the smart-
phone’s device, depending on the gripping hand posture.
The sound emitted by the speaker and detected by the mi-
crophone can be divided into direct sound delivered directly
and reflected sound that is not. Direct sound refers to sound
transmitted through the smartphone device itself as a solid
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vibration, or directly from the speaker through the surround-
ing air. Reflected sound is the sound that is transmitted from
the speaker to the environment and then reflected back to
the microphone. Since direct sound includes sound propa-
gated through the device hardware, the waveform recorded
by the microphone depends on the physical state of the de-
vice. And the posture of the hand holding a smartphone is
included in this physical state. Based on the principle that
the frequency range absorbed or amplified depends on the
shape and curvature of the hand, we designed a study to
capture this acoustic property and classify it to the gripping
posture of the hand.

For our goal, it is important to remove the reflected sound
that confuses the classification from the sound recorded in
the microphone, because it includes environmental features.
While previous attempt has been made to detect gripping
hand posture using audio signals [9], it has the limitation
that it have not completely eliminated the effects of reflected
sound. So, as the biggest contribution of our project, we
present our new method for minimizing the effect of re-
flected sound using mobile system for the hand posture clas-
sification. And by using that method, we implemented an
Android application, GraspTracker. In order not to disturb
people, the GraspTracker outputs FMCW sounds using in-
audible sounds. At the same time, it uses the smartphone’s
camcorder microphone and primary microphone together to
record sound, and processes the FFT on the recorded sounds.
Finally, the GraspTracker is trained to minimize the effect of
the reflected sound through the machine learning classifier
from the FFT results and to classify the current gripping
hand posture. In the following sections, we will detail the
challenges in designing this application, their solutions, and
evaluation on our implemented application.

2 RELATED WORK

In this section, we first introduce works that recommend an
appropriate interface based on the user’s context, especially
hand posture, to improve the quality of the user’s interaction.
The purpose and motivation of these studies is the same
as ours, and when we succeed in tracking hand posture,
recommending an appropriate interface, it can be used as an
application of GraspTracker. And we will introduce previous
studies of GraspTracker to determine the hand posture of a
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user holding a mobile device. The studies fall into two broad
categories: papers that use external sensors in addition to
the mobile device itself to identify hand posture, and those
that do not.

Grasp-based User Interfaces For modern mobile devices,
it is important to provide a context adaptive interface in or-
der to give the user the best experience, and there had been
many studies related to it [5]. And what we focused on of
these were the papers that studied grasp-based interfaces in
smartphones. iGrasp [3] solved the problem of users who
are uncomfortable typing in the traditional way when us-
ing a large screen mobile device with various grasps. They
attached an external sensor to the device to determine the
posture of the hand. It then helps the user to type keyboard
input more easily by adjusting the position of the keyboard
displayed on the screen according to the inferred hand pos-
ture. There is a similar study named iRotateGrasp [2], which
tracks the user’s grasping hand posture and rotates the ori-
entation of the smartphone’s screen according to the user’s
orientation. The study also tracks the hand posture accord-
ing to the touch input coming into the sensor installed on
the edge of the smartphone.

Sensing Grasp with Additional Hardware The iGrasp
and iRotateGrasp above both attach additional hardware
to the mobile device to sense the hand grasp. For iGrasp,
they developed a hand grasp sensing prototype targeting the
iPad, with 23 touch sensors on the right and left sides of the
iPad’s back. The hand grasp is estimated based on inputs
from 46 capacitive sensors. In addition to this, there were
Hand Sense [13] and Graspables [12] to estimate hand pos-
ture by connecting additional capacitive sensors to mobile
devices. iRotateGrasp tracked grasp on iPod, by attaching
a total of 44 sensors which contain 32 light sensors to the
edge and backside of it. Other attempts have been made to
Touch Active [10] using additional hardware that utilizes
acoustic signals. They attached a vibration speaker and a
piezo-electric microphone to the mobile device to predict
hand posture. All of the above studies categorized grasping
type in detail and detected classified posture with high ac-
curacy. However, they commonly require the user to use
additional devices. This makes the user to pay an additional
cost and feel more inconvenient than only using the mobile
device itself. Therefore, these works were limited to users’
broad use in the real world, and in GraspTracker, we wanted
to overcome these limitations.

Sensing Grasp with Built-in Sensors GripSense [6] dif-
fers from the above works in that it has succeeded in hand
grasp classification without additional hardware. As the fea-
tures used for the classification, GripSense senses the motion
of the gripping hand using gyroscope and accelerometer
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which are the built-in sensors in the smartphone, and senses
the touched area or swipe direction on the touch screen.
However, GripSense distinguishes a limited number of hand
grasp types compared to previous grasp detecting applica-
tions, and has a fatal disadvantage that grasp detection has
time gap from user’s actual grasp since posture prediction
requires user’s swipe action as feature. SmartGrip [9] is a
work that can distinguish more types of hand grasps, in real
time, without such touch events. It emits the FMCW signal
from the speaker and analyzes the sound measured by the
microphone using the direct sound that differentiates accord-
ing to the gripping type of the hand and use it as a feature
of the classification. Since sound playback and recording
is available as a basic feature of a smartphone, it does not
require any additional devices, and the FMCW signal is very
short in length, allowing the user to track the hand posture
closer to real-time. SmartGrip, however, has not succeeded
in separating the direct sound completely from the recorded
sound input. To improve the accuracy of the methods they
used, they needed a way to remove the effects of the reflected
sound from the microphone as much as possible. We will
introduce our own method for eliminating the effects of re-
flected sound in the next section, and describe GraspTracker,
an application built using it.

3 DESIGN AND IMPLEMENTATION

GraspTracker identifies user’s smartphone grasp posture us-
ing built-in sensors on smartphone. Fig 1 shows the system
overview of GraspTracker. It generates FMCW audio signal
from the earpiece speaker of the smartphone, and records
the sound with two different microphone. For each recorded
sound, FFT (Fast Fourier Transform) is performed to get the
frequency response and extracts feature from the result. Fi-
nally, GraspTracker classifies the user’s grasp posture using
extracted features. In the remainder of this section, we will
discuss detailed explanation and design rationale of each
components.

3.1 Sound propagation model

To distinguish different grasp posture, GraspTracker uses
inaudible sound. In this subsection, we analyze how the
emitted sound propagates and reaches the microphone.
The emitted sound can be classified into two categories,
direct sound and reflected sound as shown in Fig 2. Direct
sound goes straight from the speaker to the microphone, and
propagated through device body and air. The direct sound
propagated through air is affected by the skin of hand on
the propagating path. As human skin absorbs acoustic signal
and the absorption rate is different for each frequency[1],
each grasp posture attenuates certain frequency ranges.
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Figure 2: Propagation of sound emitted from earpiece
speaker.

The direct sound propagated through device body is in-
fluenced by the user’s grip, which changes damping and
boundary conditions[4, 11]. Different damping and boundary
conditions changes the propagating sound, which enables to
distinguish grasp posture.

Dissimilar from direct sound, reflected sound is caused by
the reflection of emitted sound with surrounding objects. The
reflected sound can result in different frequency response
even with same grasp posture as it has the additional infor-
mation about surrounding environments.

3.2 Sound signal design

To classify the grasp posture, it is important to get the rich
information from the sound, which means generated sound
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Figure 3: Spectrogram of designed sound

should sweep large frequency ranges to distinguish each
grasp posture. Simultaneously, the sound should not be dis-
ruptive or audible to user.

For this, we designed the sound that sweeps from 19khz
to 21khz lineally and lasts 0.8s with python module pydub.
Spectrogram of the designed sound is shown in Fig 3.

3.3 Eliminating the reflected sound

With the designed sound signal, each grasp figure responses
in unique way. Left and middle graphs of Fig 4 shows the FFT
result of different grasp posture when the designed sound is
played. Due to the change on damping, boundary condition,
and attenuation caused by the skin, each grasp posture can
be distinguished.

However, the response changes when the environment
is changed. Middle and right graphs of Fig 4 show the re-
sponses when the grasp posture is same but environment is
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different. Even if the grasp posture is same, the response is
quite different because of the reflected sound.

To address this issue, GraspTracker leverages another mi-
crophone which is common in modern smartphones. In spe-
cific, GraspTracker plays the designed sound from the ear-
piece microphone and records it from two different micro-
phone, one is usual microphone that is located at the bottom
of the smartphone, and the other is top microphone that
can be accessed by CAMCORDER MICROPHONE on Android.
The bottom microphone records the direct sound affected
by the hand posture and reflected sound, and the top micro-
phone records the direct sound that is not affected by the
hand and reflected sound. Here, recorded reflected sound
of two microphones are similar than the direct sound even
if the position of two microphones are different, hence the
reflected sound can be cancelled out.

3.4 Classification

Feature extraction We use FFT coefficients to capture the
distinct frequency response from each grasp posture. How-
ever, raw FFT coefficients cannot be used because too many
features is not good for classification. Even if the designed
sound’s duration is about 0.8s, GraspTracker records the
sound for 6s. This is because the sound is not immediately
played on Android smartphone due to scheduling problem.
If we use sampling frequency of 44100hz, the number of FFT
coefficients in 19khz to 21khz range is 24000, which is too
many. Thus, we averaged the amplitude of FFT coefficients
of 25Hz window, resulting 123 features for each microphone,
246 features in total.

Classifier We use Support Vector Machine (¢ = 1.0, poly-
nomial kernel with degree=3) as a classifier, provided by
scikit-learn python module. We employ SVM classifier since
it needs not much training data and less prone to overfitting,
as it finds an optimal hyperplane for classification. Moreover,
it outperforms other types of classifiers in our evaluation
such as logistic regression and random forest.

3.5 Implementation

GraspTracker is implemented as an Android application with
Kotlin. We generate the sound through earpiece microphone,
collect the sound data from the two microphones, and save
the data as an csv file with the Android application. Then,
we build an classifier and evaluate with scikit-learn python
module.

To show the feasibility of the real time classification, we
also implement a demo application that extracts feature and
classifies the grasp posture on device in real time with Weka
library. The time taken for the feature extraction and classi-
fication is relatively shorter than the time it takes to make a
sound, demonstrating that it is suitable for use in real time.
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Table 1: GraspTracker Classification Accuracy

2-channels | top-channel | bottom-channel
LogReg 49% 31% 41%
SVM 60% 33% 56%
RF 63% 30% 51%

4 EVALUATION

To evaluate the classification accuracy of the implemented
GraspTracker, we designed experiments under various con-
ditions. For all evaluation processes, we used Google Pixel,
and they are performed in a quiet in-lab environment.

We first set up to seven labels for evaluation: grasping with
right-hand / left-hand / two-hands / right-hand-landscape /
left-hand-landscape / two-hands-landscape / on-desk. And
we conducted experiment for two users, one user collected 30
data, and the other user collected 20 data per each label, so we
collected a total of 350 data. The data of each label collected
by each person is divided into 4/5 of training data and 1/5 of
testing data. That is, 280 data were used for training, and by
using 70 testing data, we measured the accuracy. In one data,
there were 123 from each microphone channel extracted from
the recorded sound. We trained the data with seven kinds of
labels corresponding to these 246 features through a machine
learning classifier. We adopted three methods as classifica-
tion algorithms: logistic regression, SVM, and random forest.
We also looked at the classification accuracy when only one
microphone channel was used, i.e. 123 features, to determine
whether receiving two channels of microphone input would
be effective in increasing the accuracy of the GraspTracker.
All of the results of these evaluations are shown in Table 1.

First, the results in Table 1 show that using both channels
is effective for GraspTracker. In classification via SVM, accu-
racy is 56% using only the primary microphone at the bottom
of the device, 33% using only the camcorder microphone at
the top, and 60% using both microphones. Accuracy increases
in the order of using top-channel only, bottom-channel only,
and using both microphones, and the trend is the same in
other machine learning algorithms. This result fits well with
the hypothesis we built when we designed GraspTracker.
Since the camcorder microphone at the top of the device is
very close to the speaker, it will consist of reflected sound
and direct sound that is less affected by the hand holding
the device. Therefore, top-channel records cannot be a good
feature to distinguish hand posture. On the other hand, in
the case of the bottom-channel, it can be a clear feature com-
pared to the top-channel because it is greatly influenced by
the gripping hand while sound is propagated through the
device in the speaker. But the bottom-channel still contains
the sound reflected in the record. In order to minimize this
effect, we proceeded the classification using the top-channel
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Figure 4: FFT result of different grasp pose and environment with designed sound. Left figure is left hand posture
with environment 1, middle figure is two hand posture with environment 1, and right figure is two hand posture

with environment 2.

and bottom-channel together as features, and the classifica-
tion using 2-channels had higher accuracy as expected. This
can be interpreted as the classifier trained the effect of the
reflected sound in the bottom channel to cancel the features
in the top channel. Next, by comparing the accuracy of clas-
sification according to the machine learning algorithm, we
can find that SVM and random forest algorithm have higher
accuracy than logistic regression. Random forest algorithm
has 3% higher accuracy compare to SVM, however, 3% is
not a meaningful value because we conducted our test with
small amount of test dataset. For the top-channel and bottom-
channel, SVM has higher accuracy than random forest, but
we used 2-channels for GraspTracker, so we adopted the
most accurate random forest as the classification algorithm.

5 DISCUSSION

We built a application GraspTracker that tracks gripping hand
posture with inaudible sound, using only built-in sensors.
For the key algorithm of GraspTracker, we proposed a unique
method to extract direct sound from smartphone microphone
input. Our work contains the evaluation for direct sound
extraction method.

Using GraspTracker, we enable adjusting the smartphone
interface regarding the most important user context, which
is grasp posture. Thus, increasing user’s QoE.

Limitations The most obvious limitation of the GraspTracker
we have developed so far is that the application does not have
a high enough accuracy for real-world use. The method cur-
rently used to offset the reflected sound in the GraspTracker
is to store two kinds of microphone inputs and merge the two
into the appropriate coefficients through machine learning.
And the SVM, random forest, and logistic regression that we
used all have the characteristic that they do not output high
enough accuracy when there is not enough data set to use

for train. And the lack of this training dataset is the biggest
problem of our work.

Since we did not collect enough dataset, we could not
try deep learning that requires a lot of data, and even the
classifiers we used as a substitute did not show noticeably
high accuracy. There may be other reasons for low accuracy,
but because of the lack of data, we cannot even be convinced
that the accuracy is low for other reasons.

Next, in connection with the lack of a dataset, Grasp-
Tracker’s evaluation was processed with that dataset that
have lacked diversity. In the evaluation part we used only
one type of device (Google Pixel). However, speakers and
microphones are hardware that is easy to have different
characteristics for each device, so for proper evaluation, it
is necessary to evaluate whether the same algorithm works
well on different devices. Our hypothesis also suggests that
GraspTracker’s classification algorithm can be affected dif-
ferently depending on the shape of the user’s hand. However,
for the user test, only two participants were evaluated. For a
wider range of practical uses of GraspTracker, more than 10
different participants should have been tested.

Finally, the current GraspTracker has not been validated
for use in wild environments. Since there was no evalua-
tion of the wild environment, it is unknown whether both
datasets and algorithms used for current evaluation will
work. The FMCW signal of the inaudible sound we designed
may be influenced by external noise, and the case of much
movement of the phone such as shaking is not considered.
Also, in real life, there are various types of postures where
people grip mobile phones. In our case, we have evaluated 7
types in total, so for the real use of GraspTracker, we need to
investigate grasp poses as a user test in a wild environment.

Future work To improve the usability and accuracy of the
GraspTracker, here we discuss the future work. First, we
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can extract only the direct sound propagated through the
device body. As mentioned earlier, grasp posture changes the
damping and boundary conditions[4, 11], we can get a sound
that is not affected by the surrounding environment at all if
this sound can be solely extracted. As the propagation speed
of the sound is much faster in solid, this approach would be
possible.

Second, we can employ neural network to improve the
accuracy. Currently, features for classification have both
information about grasp posture and surrounding environ-
ment. As neural networks can extract complex features that
is more relevant to grasp posture, the accuracy would be
improved. However, we need to collect much more data to
train it.

Lastly, if hand posture detection is always-on and generate
inaudible sound through earpiece microphone all the time,
it would restrict the user’s activity and drain lots of battery.
We can employ other sensors such as accelerometer and
gyroscope to detect possibility of grasp posture change. If
the posture change is detected, then detect the exact posture
with GraspTracker.

6 INDIVIDUAL CONTRIBUTIONS &
WHAT WE LEARNED

e Equal contribution

— Brainstormed the idea, and designed the whole al-
gorithm of GraspTracker.

- Found related work, and shaped up the topic.

— For the documentation, wrote proposal and final
report for each part.

— Conducted entire experimental setup and user test-
ing process for evaluation.

e Seungjoo Lee

- Suggested using sound signal to identify the grasp
posture.

— Experimented with recorded sound signal using var-
ious methods like spectrogram, FFT to determine
how to extract relevent features.

- Implemented an android code that performs FFT and
extracts feature from them.

e HyungJun Yoon

— Designed the FMCW audio structure and implemented
the code to output the audio.

- Implemented an android code that outputs an au-
dio signal from the speaker and records it on two
microphones.

— Set up the environment for machine learning train-
ing and testing through scikit-learn, and conducted
coding and evaluation for SVM / random forest /
logistic regression.

Lee and Yoon

— Implemented the machine learning part of Grasp-
Tracker android code.
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