GraspTracker: Tracking user grab posture with built-in sensors on mobile devices

SeungJoo Lee, HyungJun Yoon 2019.12.12

Reminder: Our mid-presentation

Problem

- One-handed interaction is common, but slow and uncomfortable
- Research and patents about one-handed interface **but no way to track**

Real-time tracking of user's hand posture with only built-in sensors

Previous approach: detecting transitions

Detect unique motion feature with accelerometer & gyroscope

Using inaudible sound

- Direct sound
 - Device body
 - Air

- Reflected sound
 - Reflected by the surrounding environments

Direct sound

- Device body
 - Affected by the contact caused by the grip
 - Damping conditions
 - Differs for each frequency
- Air
 - Affected by the skin of the hand
 - Human hand absorbs the acoustic signal
 - Absorption rate differs for each frequency

Generate sound with various frequencies and observe the response

Sound for testing

Response from different grasp pose

Reflected sound

Information about surrounding environment

Considering only direct sound

• Difference in speed of sound in air and solid

Medium (20 °C)	Speed of Sound Waves (m/s)
Dry Air	343
Water	1437
Wood	3850
Glass	4540
Aluminum	6320

- Smartphone with aluminum, 10cm
 - \circ ~ Time for the first sample comes through air
 - 0.1m / 343m/s = 0.29ms
 - Propagation delay for aluminum
 - 0.1m / 6320m/s = 0.015ms
 - Number of samples sent in 0.275ms
 - 0.275ms * 44100 samples / sec = 12 samples

Generate the sound **N** times and gather 12***N** samples

Considering only direct sound

• Difference in speed of sound in air and solid

Medium (20 °C)	Speed of Sound Waves (m/s)
Dry Air	343
Water	1437
Wood	3850
Glass	4540
Aluminum	6320

- Smartphone with aluminum, 10cm
 - \circ ~ Time for the first sample comes through air
 - 0.1m / 343m/s = 0.29ms
 - Propagation delay for aluminum
 - 0.1m / 6320m/s = 0.015ms
 - Number of samples sent in 0.275ms
 - 0.275ms * 44100 samples / sec = 12 samples

Generate the sound **N** times and gather 12***N** samples

Considering only direct sound

Challenge in prior approach

New approach: Canceling the reflected sound

New approach: Canceling the reflected sound

Common smartphone have 2 microphones, one on top and one on bottom

- → We can get stereo records
- ()) Speaker (on top)
 - Camcorder microphone (on top)
 - Primary microphone (on bottom)

Overall system of GraspTracker

- ()) Speaker (on top)
 - Original sound
- Ţ

Ψ

- Camcorder microphone (on top)
- Direct sound 1 + Reflected sound
- Primary microphone (on bottom)
- Direct sound 2 + Reflected sound

• FMCW audio structure

• FFT result

• Feature extraction

- From each FFT result, extracted 132 features
- Each feature means the average amplitude of 50Hz window on FFT result
- 264 features in total
- Label class
 - 7 classes
 - on_table / one_left_hand / one_right_hand / two_hands
 landscape_left_hand / landscape_right_hand / landscape_two_hands
- Classification
 - o Dataset
 - 50 data for each class → 350 data
 - 40 training data, 10 training data for each class
 - Used SVM for classification
 - Classification accuracy: 60%

GraspTracker Demo