SPADE-based Line Art Colorization

Applying the existing models to our own problem (Option 1)
https://github.com/Ugness/Line-Art-Colorization-SPADE

Team 3
20160399 Jaehoon Yoo 20160479 Seungjoo Lee
KAIST KAIST
wogns98@kaist.ac.kr juicelee@kaist.ac.kr
20160534 Taeckyung Lee 20160409 Dongjun Youn
KAIST KAIST
terry00123@kaist.ac.kr f52985@kaist.ac.kr
| Load sketch || Load Default Sketch |0 Sketch | [ colerzaten ||| Brushsize |~ latentshift oo L2 Dy

SKETCH

' _ /
e

—
e

—

1 [ |
m\ AN \'H

Figure 1. UI of demo application. Left canvas shows line art image and hint patch from the usr, and right canvas is the

colorization result.

1 Introduction

SPADE[7] is a semantic image synthesis model that pro-
duces photo-realistic image with a given semantic input. It
proposed new spatially-adaptive normalization layers since
normalization layers tend to wash away semantic informa-
tion, thus resulting in suboptimal synthesized images. We
thought this model can be applicable to colorization since
the line art and color hint can work like a semantic map of
SPADE, and the model will synthesize the image looks like
the illustration. It enables colorizing the line art with user-
wanted color. As the property of semantic map is changed,
we modified the original SPADE model to better perform on
our colorization task.

To this end, we will deliver a SPADE-based model that
colorizes a given line art image using a hint image. Instead of
the semantic map the SPADE originally used, we use the line
art image and hint image that consists of color patches as a
semantic input. We also implement a web demo application
that allows the users to use our resulting model interactively.
Our model and demo can be found on https://github.com/
Ugness/Line-Art-Colorization-SPADE

2 Methods
2.1 Dataset Preparing

The dataset we need for training is set of pairs of line image,
and color images. In order to create the dataset, we used


https://github.com/Ugness/Line-Art-Colorization-SPADE
https://github.com/Ugness/Line-Art-Colorization-SPADE
https://github.com/Ugness/Line-Art-Colorization-SPADE

CS470: Introduction to artificial intelligence, Fall 2019, KAIST SoC

the following method: 1) Collect colored images, 2) Generate
sketch images, and 3) Generate line image.

Collect color images In order to collect color images, we
used Safebooru[4]. Safebooru is an anime and manga picture
search engine. The biggest feature of Safebooru is that the
images are tag-based. There are various tags that describe
the image, and each image is associated with specific tags.
In order to create an appropriate dataset for the purpose
of line-art coloring, for experiments, we selected images
that have tags "white-background", "solo" and "upper-body".
There were total 8644 images downloaded. Among them,
100 images were randomly selected and used as a test set.
Those images were not included in training set, so that we
could recognize the network just memorize the line art and
color as it self. For demo, we used images that have tags
"white-background", "solo". There were total 98944 images.

Create sketch images After downloading images, we used
Sketchkeras[5] to generate rough sketch images from color
images. Sketchkeras is a network that generates black and
white sketch-style drawing from the given color image. By
using it, we could generate corresponding sketch images. By
using different denoising filters, we could generate 3 different
styles for one colored images.

Create line images Since sketch images generated from
Sketchkeras is pencil-styled drawing, it had thin lines and not
suitable for training. Therefore, we used sketchSimplification
models[8, 9] in order to make lines more digital-styled and
ticker. This process was executed for all three different styles
generated by sketchKeras. In order to augment the diversity
of data, we decided to use all three of those images for dataset.
The line art generated this by process would be the final input
for our model.

2.2 Training Scheme

Our model is based on SPADE[7], which synthesizes the se-
mantic image using spatially-adaptive normalization. SPADE
takes label map, style image, and instance map as an input.
To modify SPADE for our needs, we replace the input of
SPADE: line/hint image as a label map, and color image as a
style image.

Create hint images To generate a hint for each input color

image, we used the user-guided hint simulation algorithm[11].

This algorithm extracts color pixels where their position fol-
lows Gaussian distribution. The number of hints per image
is decided by repeated coin toss simulation. By the result, we
obtain a hint image and corresponding mask (indicating the
pixel is a valid hint pixel). Hint image (RGB; 3 X H X W) and
mask (L; 1 X H X W) are concatenated to generate 4 X H X W
input, where H and W are the same sizes with color and line
art images.

As a result, total three types of images are passed to the
model for training; color images, line images, and hint images.

Team 3

Figure 2. Sample from our dataset. Color image, sketch im-
age, line image (result of sketch simplification on sketch im-
age), and hint image (overlayed on the color image). Among
images, sketch image is not used for an input of our model.

semantic map line art map

50 50 A
100 100 -
150 150
200 200 4
250 250 4

0
0 -

Figure 3. Comparison between a resized semantic label map
and a line map. Although the resized semantic label map
gives some evidence of contents, the resized line map cannot
give any useful information.

2.3 Model Development

The original project with SPADE[7] Module was about se-
mantic image synthesis. Since the semantic map is dense
enough, it was good to feed the label maps by down-sampling.
However, unlike semantic labels in SPADE, our hint/line art
label is too sparse to process them directly. Fig 3 shows the
information density between a semantic label map and a line
art map when they are down-sampled. Most of the informa-
tion is lost when we down-sample the hint/line art maps,
thus we need to make a reasonable down-sampling way to
feed more informative hint maps to the network.

We add LadderNet-like structure(netL) to SPADE to give
a hint and line art with a small loss of information. Fig 4
shows our novel network’s structure, and Fig 5 shows the
results of original SPADE and our netL-SPADE. By providing
a hint/line art map with an additional feature encoder, SPADE
Module could get "semantic map-like" features.



SPADE-based Line Art Colorization

Original

VAE

e T |SPADE, |SPADE SPACE SPADE!
y

Encoder I h > Minest’ T imes

Figure 4. Comparison between original SPADE and Our
netL model. We use netL module to feed hint and line art
while the original SPADE feed them with down-sampling.

Hint |

-8 g
B AN N T
[ = IEL:
S %} AN A€

A =
w | O M |

2|2\ | AN

w/
netL

Figure 5. Comparison between result of original SPADE and
Our netL model. The model with netL preserves more high
level features like eyes or face components than the original
model.

2.4 Implementation Details

To achieve high performance on the line art colorization, fol-
lowing techniques are applied in addition to original SPADE
module: 1) reflection padding, 2) using Danbooru pre-trained
ResNet, and 3) HSV augmentation and increased hint patch
size

Reflection padding Instead of using a zero-padding op-
tion, we used reflection padding in all convolutional layers
to preserve sparse information. Unlike the semantic label
or real picture images, line art has a lot of sparsity. Almost
90% of the image is white, and only a little proportion of
black lines has all the information. And also, zero value in
normalized color space means gray color. It makes the image
to have a gray letterbox, not a white. This gray letterbox
can interrupt the model to learn correctly. So we applied

CS470: Introduction to artificial intelligence, Fall 2019, KAIST SoC

reflection padding instead of zero-padding, fit better in our
environment.

Using Danbooru pre-trained ResNet We used Danbooru
pre-trained ResNet[1] instead of ImageNet pre-trained VGG19
network for perceptual loss[2]. The color distribution be-
tween real-images and illustrations are too different. Since
the original VGG Network is from ImageNet Dataset, it is
hard to get meaningful features from illustrations. By ex-
change the network, we could get a more accurate feature
comparison between fake and real color illustrations.

HSV augmentation and increased hint patch size We
increased the size of hint patches and used HSV data augmen-
tation to avoid model to overfit. Without color augmentation,
a model can memorize the color image corresponding to the
line art. But the colorization problem is a multi-modal prob-
lem. So we added HSV data augmentation to model to solve
the multi-modal problem.

We used Adam optimizers with a learning rate of 0.0001
for the generator and 0.0004 for the discriminator[3]. Both
optimizers used betal of 0, beta2 of 0.9. We used a cosine an-
nealing and warmup learning rate scheduler[6]. We trained
our network with 256*256 images for 50 epochs with a batch
size of 32. It took about 12 hours with 4 RTX TITAN GPUs
when we trained our model on the upper-body dataset con-
taining about 8600 images.

2.5 Demo

To show our results in a interactive way, we implemented a
demo web page with HTML/CSS frontend and Flask backend.
As shown in Fig 1, the web page consists of color canvas with
brushes, sketch loading, sketch simplification, colorization,
and latent shift control.

Frontend User can load existing sketches from local file
and default sketch, or draw their own sketch on the canvas
using brushes. Then, apply sketch simplification to convert
the sketch to a line image. With the line image, make hint
pixels above line image layer to generate hint image. After
generating line image and hint image, press colorization
button to get the colorized image on the right canvas. Latent
shift can be applied to generate different colored image as
explained above.

Backend For the fast response, the backend server loads
sketchKeras[5] model and our colorization model on a GPU
when it boots. When the user send base64-encoded image for
the simplification and colorization by HTTP Post, the server
invokes appropriate model and sends the result image with
HTTP Reply.

3 Conclusion And Discussion

We had some analysis on the model’s understanding of line
arts and hints.



CS470: Introduction to artificial intelligence, Fall 2019, KAIST SoC

First, we plot all possible images from different latent
vectors. As shown in Fig 6, each dimension of latent space
represents different color domains. For example, the right-
uppermost image is from a latent vector which has a value
of -100 in the first dimension, and the others are all zero.

Second, we want to find how much the quality of the
sketch/line effects on the model. From Fig 7(a), we could
conclude that some of the color hints were remaining as
perturbations. Each row in Fig 7(a) means line art input
and corresponding colorized results. (1) gets line art from
the original image directly. (2) just erased the horizontal
background lines from (1). (3) gets line from simplifying the
line of (2). Since the line art of (2) had undesired color hints,
the model could recognize that there was a color background.
From these symptoms, we find out that there are undesired
color hints in synthetic line arts.

Third, our model was too vulnerable with the thickness of
line art. Fig 7(b) shows how the result changes with different
line thicknesses. The left line art is from inference sketchK-
eras[5] with a size of 768768, The right one is with a size
of 512*512. Both line arts are fed to the colorization model
with 256256 using the nearest interpolation. Although both
line art looks similar to the naked eye, the painted results
are too different. The result from the size of 512 seems like
it failed to recognize face parts.

From the above analysis, we suggest some methods which
will improve the model’s performance. First, feed the line art
as a binary map. We trained our model with a line art that
has 256 possible values. By using the line art as a gray image,
the model was able to learn undesired color hints from the
line art’s perturbations. Second, prepare more diverse line
arts. As we used the lines from a single sketch simplifica-
tion model, our model works only on lines that are from the
simplification model. There is another sketch simplification
algorithm, Xdog[10]. And also, you can prepare line art with
different line thickness by applying the images to the sim-
plification model with different sizes. We hope the above
methods will help you to get a more expert Al painter.

4 Contributions

e 20160399 Jaechoon Yoo
— Download and parse the Safebooru dataset[4].
— Imported Sketchkeras[5] and get sketch images from
color images.
— Colorization-SPADE Lnet and other method experi-
ments.
— Deploy model on our demo application.

® 20160479 Seungjoo Lee
— Imported and changed SPADE[7] module to fit our
own dataloader and input.
- Implemented backend part of the demo application,
and some of the frontend part.

e 20160534 Taeckyung Lee

Team 3

z value -> 100

@ | 3
. | 0

Z position

A A AGAG AR
il | ikl | i | il | I | g | o

Figure 6. Painted Images from different latent vectors. No
hint for inference.

Original Image

(1) @) ©)

Figure 7. (a) shows the effect of undesired color hint in
the perturbations, (b) shows results from different line art
thickness.

— Implemented Safebooru dataloader with hint gener-
ation based on colorization-pytorch[11].
— Implemented frontend part of the demo application.

e 20160409 Dongjun Youn
— Imported and changed SketchSimplification[8][9] to
generate line-style drawing.
— Prepared train set and test set of images.

References

[1] Matthew Baas. 2019. Danbooru2018 pretrained resnet models for Py-
Torch. https://rf5.github.io. https://rf5.github.io/2019/07/08/danbuuro-


https://rf5.github.io
https://rf5.github.io/2019/07/08/danbuuro-pretrained.html
https://rf5.github.io/2019/07/08/danbuuro-pretrained.html

SPADE-based Line Art Colorization

pretrained.html Accessed: 2019-11-27.

L. A. Gatys, A. S. Ecker, and M. Bethge. 2016. Image Style Transfer
Using Convolutional Neural Networks. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2414-2423. https:
//doi.org/10.1109/CVPR.2016.265

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Sto-
chastic Optimization. CoRR abs/1412.6980 (2014).

Alex Lamson. 2019.  https://www.kaggle.com/alamson/safebooru
Accessed: 2019-11-27.

lllyasviel. 2017. https://github.com/lllyasviel/sketchKeras Accessed:
2019-11-27.

Ilya Loshchilov and Frank Hutter. 2016. SGDR: Stochastic Gradient
Descent with Restarts. CoRR abs/1608.03983 (2016). arXiv:1608.03983
http://arxiv.org/abs/1608.03983

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019.
Semantic Image Synthesis with Spatially-Adaptive Normalization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern

[8

[}

[9

—

[10]

[11]

CS470: Introduction to artificial intelligence, Fall 2019, KAIST SoC

Recognition.

Edgar Simo-Serra, Satoshi lizuka, and Hiroshi Ishikawa. 2018. Master-
ing Sketching: Adversarial Augmentation for Structured Prediction.
ACM Transactions on Graphics (TOG) 37, 1 (2018).

Edgar Simo-Serra, Satoshi lizuka, Kazuma Sasaki, and Hiroshi Ishikawa.
2016. Learning to Simplify: Fully Convolutional Networks for Rough
Sketch Cleanup. ACM Transactions on Graphics (SSGGRAPH) 35, 4
(2016).

Holger Winnemoller. 2011. XDoG: Advanced Image Stylization with
eXtended Difference-of-Gaussians. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Non-Photorealistic Animation and
Rendering (NPAR ’11). ACM, New York, NY, USA, 147-156. https:
//doi.org/10.1145/2024676.2024700

Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S.
Lin, Tianhe Yu, and Alexei A. Efros. 2017. Real-Time User-Guided
Image Colorization with Learned Deep Priors. CoRR abs/1705.02999
(2017). arXiv:1705.02999 http://arxiv.org/abs/1705.02999


https://rf5.github.io/2019/07/08/danbuuro-pretrained.html
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.1109/CVPR.2016.265
https://www.kaggle.com/alamson/safebooru
https://github.com/lllyasviel/sketchKeras
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1608.03983
https://doi.org/10.1145/2024676.2024700
https://doi.org/10.1145/2024676.2024700
http://arxiv.org/abs/1705.02999
http://arxiv.org/abs/1705.02999

	1 Introduction
	2 Methods
	2.1 Dataset Preparing
	2.2 Training Scheme
	2.3 Model Development
	2.4 Implementation Details
	2.5 Demo

	3 Conclusion And Discussion
	4 Contributions
	References

