DeltaCNN: Efficient processing of CNN inference for
continuous mobile vision

Seungjoo Lee
KAIST

juicelee@kaist.ac.kr

Abstract

Convolutional Neural Network (CNN) models for continuous
mobile vision are recently being widely deployed on various
mobile applications. While it is desired to run CNN models
on mobile devices to avoid exposure of privacy-sensitive
mobile data, processing complex CNN models on a resource-
constrained mobile device became a bottleneck in assuring
model accuracy and QoE. Several studies were conducted to
accelerate the processing of CNN model on a mobile device,
but the state-of-the-art technology only achieves 600ms to
3500ms latency for processing a single image. To address
this issue, we propose DeltaCNN, which is a system that effi-
ciently reduces the latency of CNN inference by leveraging
the sparsity of the intermediate image frames that hardware-
based encoder and decoder processes. From the experimental
result, DeltaCNN shows the reduced latency as the sparsity
of the matrix grows, while the latency of the DeltaCNN re-
mains higher than the legacy convolution processing. We
expect the latency of the DeltaCNN to outperform the legacy
processing if it is fully implemented on the hardware-based
encoder layer.

1 Introduction

With the rapid development in deep learning and computer
vision, continuous mobile vision is currently serving vari-
ous applications in end-user mobile devices, including fa-
cial recognition[4], street navigation[7], Augmented Reality
(AR)[1, 2], and etc. While traditional continuous mobile vi-
sion tasks were dominated by hand-crafted features with
linear classifier such as Support Vector Machine (SVM), state-
of-the-art algorithms for these tasks mostly leverage Convo-
lutional Neural Networks (CNN) with significantly higher
accuracy. As such CNN model inference requires excessive
computing power, it is usually offloaded on external cloud
servers rather than running on a resource-constrained mo-
bile device. However, transmitting input video stream from
an end-user mobile device to the cloud server for offloading
exhibits serious privacy concerns. Moreover, offloading CNN
inference at the cloud server often degrades the Quality of
Experience (QoE) on user due to unreliable wireless network
conditions at end-user mobile device.

To mitigate this issue, there have been several following
approaches that aims to ease the computational complexity
of CNN inference to run it on resource-constrained mobile
devices. SparseSep [5] reduced runtime internal memory

Jaemin Shin
KAIST

jaemin.shin@kaist.ac.kr

usage of CNN model layers for processing on the resource-

constrained environment. Euphrates [19] proposed an algorithm-

architecture co-designed system that exploits pixel motion
data generated at Image Signal Processor (ISP) for low-power
CNN inference. DeepMon [11] introduced a new caching
scheme for CNN model inference on continuous mobile vi-
sion, which reduces processing latency of convolutional lay-
ers. As convolutional layer processing takes significant por-
tion of entire CNN processing (> 85%), DeepMon caches the
intermediate processing results from a frame and reuses it
at the similar region of the next frame. DeepCache [18] fur-
ther improved such caching scheme by efficiently searching
similar image blocks between two frames that are not in the
same position of the image.

Despite all these efforts to accelerate the processing of
CNN model for continuous mobile vision, the state-of-the-
art technology [18] achieves 600ms to 3500ms latency for
processing CNN with a single low-resolution image (below
500 pixels per side), which is still long to process a multiple
input frames in real-time. As recent smartphone cameras
are taking high-resolution images up to 4k, such latency
would be more substantial in practice. To mitigate this issue,
this paper focuses on further improving the CNN inference
latency and its computational cost.

To this end, we propose DeltaCNN, which is a system that
accelerates the CNN inference on mobile devices by lever-
aging the hardware-based encoder and decoder on a mobile
device. While the previous works [11, 18] calculates the sim-
ilarity of the contiguous raw frames, DeltaCNN calculates
the similarity of contiguous frames with the video codec
encoder, which outputs a compressed frame that contains
information about the difference between two frames. Our
intuition of using video codec encoder comes from the fact
that the encoding process could be done in negligible latency
with the hardware-based encoder on a mobile device. Such
design of DeltaCNN is expected to greatly reduce the sub-
stantial overhead of similarity calculation of previous works
and enable real-time CNN processing on multiple frames on
a mobile device.

To test the feasibility of our design of DeltaCNN, we imple-
mented the matrix sparsification and sparse matrix multipli-
cation using several APIs (PyTorch and SciPy) and compared
the processing latency of convolutional layers on different
size of the image input. As a result, we found that the la-
tency of DeltaCNN gets reduced as the sparsity of the image

CS530, Fall, 2019, KAIST SoC

= a

I-frame P-frame B-frame I-frame

Figure 1. A sequence of video frames, consisting of two
keyframes (I), one forward-predicted frame (P) and one bi-
directionally predicted frame (B).

grows. The processing latency of DeltaCNN is higher than
the legacy processing method in the evaluation, but we be-
lieve that the latency of DeltaCNN would be greatly reduced
when it is implemented on a hardware encoder layer, directly
leveraging the P-frame for CNN processing.

2 Background
2.1 Video compression

There are two approaches to achieve video compression,
which are intra-frame and inter-frame compression. Intra-
frame compression uses the current video frame for compres-
sion, which is fundamentally same as image compression.
Inter-frame compression uses one or more preceding and/or
succeeding frames to compress the contents of the current
frame. Among them, H.264, which is inter-frame compres-
sion, is the most commonly used format, used by 91% of
video industry developers as of September 2019[6].

Inter-frame compression consists of I-frame (Intra-coded
picture), P-frame (Predicted picture), and B-frame (Bidirec-
tional predicted picture). The I-frame contains complete in-
formation of an image, like a JPEG or BMP. It can be decoded
as a whole frame without any dependencies. The P-frame
holds only the changes in the frame from the previous one.
Since it only encodes the changes, size of the video can be
reduced significantly. The B-frame saves even more space by
encodes differences between the current frame and both the
preceding and following frames to save the current frame.
Fig 1 shows how inter-frame compression works.

2.2 Related work

To enable NN inferencing on resource-constrained mobile
environment, many techniques are proposed including cloud
offloading and convolutional layer caching.

Cloud offloading Rather than processing NN models di-
rectly on mobile device, it is common to conduct inference
using cloud services[14]. However, this approach imposes
serious privacy concern as it can leak sensitive user data
through the network, including images, voices, and textual
contents. To keep the user’s privacy, several approaches are
proposed, such as using the cryptography method[9, 10], and
intel SGX[13]. They achieves a high level of user privacy, but
their performance is not enough to be used in practice, and
they often limit the size of NN model. Moreover, cloud-based
network processing can degrade the Quality of Experience

Team 11

APPLICATION FRAMEWORK

android.media.*

frameworks/av/

MEDIA PLAYER SERVICE

frameworks/av/media/libmediaplayerservice

Media Codecs

BINDER IPC PROXIES

frameworks/av/libmedia

MediaPlayer Binder

MediaPlayerService.cpp

OMX IL COMPONENT

Hardware Codec
Implementation

libstagefrighthw.so w—|___—

frameworks/av/libstagefright

MediaSource.cpp

OMX Core

Figure 2. The media architecture of Android. There are hard-
ware components that accelerate the encoding and decoding
of a video frame.

(QoE) of the user due to unreliable wireless network condi-
tions.

Convolutional layer caching Some works focused on con-
tinuous vision applications on mobile environment, where
CNN models are usually used. They cache the result of convo-
lution computation and exploit redundancy between frames
in continuous video stream. DeepMon[11] divides a frame
into square grids and compares corresponding blocks be-
tween current frame and previous frame using the histogram
of colour distribution. If there are reusable regions (cache
hit), it fetches previous convolution computation results for
those regions from the cache. DeepCache[18] also caches
the calculation result of previous frame and compares it to
current frame. Nevertheless, unlike DeepMon, it uses dia-
mond search[16] that enables comparison between grids in
different location, thus tolerates the scene variation.

3 System Overview

The goal of the DeltaCNN is to reduce the computational
complexity and processing latency of CNN inference at gen-
eral continuous mobile vision tasks. Prior to the DeltaCNN,
other approaches [11, 18] calculated the similarity between
contiguous raw frames of video, which results in substantial
overhead in computation. DeltaCNN aims to minimize this
overhead by encoding the input video frame with a video
codec, which outputs a compressed version of video frame
that describes the difference between the contiguous frames.

DeltaCNN: Efficient processing of CNN inference for continuous mobile vision

CS530, Fall, 2019, KAIST SoC

H.262
encoded frames

decoded
I-frame

A\ 4

initial calculation

decoded
P-frame

fast delta calculation

A\ 4

sparse matrix

D

N x (convolution + max-pooling)

fast calculation
with sparse matrix

= output

M
(2Rl LXK

% =—» output

2SN

addition with cached
intermediate results

Figure 3. System overview of DeltaCNN.

The main benefit of encoding the input video frame comes
from the existence of hardware-level encoder and decoder at
the mobile devices, which performs encoding and decoding
of video with negligible overhead. As an example, Figure
2 shows the media architecture of Android which includes
the hardware components for encoding and decoding. Thus,
DeltaCNN requires continuous mobile vision task to encode
its input video frames with certain video codec. In this paper,
we focus on demonstration of DeltaCNN with H.262 (MPEG-
2) codec [3] and further discuss how it could be extended at
other types of video codecs.

Figure 3 shows the overall functional architecture of our
system, DeltaCNN. Each H.262 encoded frames of the input
stream are processed through CNN model, which includes
multiple convolutional layers with max-pooling and fully-
connected layers. As the stream of encoded frames consists
of multiple set of one I-frame followed by multiple P-frames,
DeltaCNN processes the CNN model with 2-stage processing
on each set: (1) initial I-frame calculation and (2) fast P-frame
(delta) calculation.

Initial I-frame calculation When a I-frame comes as a
new frame to be processed, DeltaCNN decodes the frame
with hardware-based decoder. Then, DeltaCNN processes
the decoded I-frame through convolutional layers and pool-
ing layers, then cache the intermediate result afterwards.
Next, the intermediate result gets processed through fully-
connected layers and DeltaCNN outputs result for the I-
frame.

Fast P-frame (delta) calculation After the I-frame being
processed, a P-frame comes as a new frame to be processed.
This process holds same for multiple P-frame that appears
after a I-frame. The DeltaCNN decodes a P-frame then pro-
cesses the decoded frame through convolutional layers and
pooling layers. Since the P-frame only contains the motion
vector and the residual difference between the frames, the
decoded P-frame is sparse, containing much less information
compared to decoded I-frame. Processing a sparse matrix
through convolutional layers and pooling layers could be
done much faster compared to the same calculation with
decoded I-frame. After the processing, DeltaCNN adds the
intermediate result with the cached intermediate result from
the initial I-frame calculation. Then, DeltaCNN processes
the added value through fully-connected layers and outputs
result for the P-frame. The design rationale behind this pro-
cessing design is explained in detail in Section 4.

4 DeltaCNN Design Rationale
4.1 Interpreting the P-frame

When the P-frame is encoded, the current frame is divided
into 16 pixel X 16 pixel macroblocks and compared with the
previous frame (reference frame). When there are matched
blocks between two frames, the encoder calculates the offset
between two blocks and encodes it as an "motion vector".
Motion vector is calculated at the granularity of half-pixel,
and frequently zero due to redundancy of video stream. It
also encodes residual to compensate the error of matching.
If there is no suitable match, for example, when the new

CS530, Fall, 2019, KAIST SoC

object shows up in the scene, macroblocks for that region
are treated like an I-frame block.

In result, we can get a motion vector, which is frequently
zero, and a residual from the P-frame. With cached previous
frame, we can get a difference between two frames.

4.2 Addition of CNN

Sine the convolution is a linear operator, it has a distributive
property. Thus, following equation holds for convolution,
where x(n) is a weight of convolutional layer, and h;(n) and
hy(n) are input.

x(n) * {hi(n) + hay(n)} = x(n) * hy(n) + x(n) * hy(n)
This means if we have the convolution result of previous
frame, we can compute the convolution of current frame
only by apply convolution to delta like the equation below.

Imgeyr = Imgprev +A
x(n) * {Imgeyur} = x(n) * Imgpreo + x(n) * A

However, there are layers in CNN that is not a linear oper-
ator like max-pooling and activation. If the delta passes those
layers and just added to the calculation result of previous
calculation, it would produce wrong results. We will explore
and report the effect of those errors on the accuracy of NN
models on evaluation section.

4.3 Sparse Matrix Multiplication

As shown in Fig 4, convolution operation with multiple chan-
nels and multiple filters is represented as matrix-matrix mul-
tiplication. As delta is a sparse matrix due to the redundancy
of the video stream, we can compute the matrix-matrix mul-
tiplication much faster.

5 Implementation & Evaluation

In this section, we discuss the implementation and evaluation
of our system in several platforms including Pytorch and
SciPy. Here, we do not directly use the P-frame from the
hardware encoder, rather subtract RGB value of one frame
from that of the previous frame to imitate the P-frame input
and show the feasibility of our design.

5.1 PyTorch implementation

Our system needs the convolutional layer to allow sparse
matrix representation. However, as there is no deep learn-
ing framework that allows this behavior, we make our own
convolutional layer on PyTorch. We mimic the behavior
of original implementation of the convolutional layer that
changes the convolutional calculation into one matrix-matrix
multiplication[8], as shown in Fig 4.

Fig 5 shows the structure of implemented convolution
layer. It saves last input to calculate the difference between
current input and last input, and changes calculated differ-
ence into sparse matrix representation such as COO or CSR
format. Using the sparse matrix, it calculates the convolution
by matrix multiplication using torch. sparse module, adds

Team 11

the result with saved last output, and finally produces out-
put. In this design, there is no accuracy drop even there are
non-linear activations between convolutional layers since
it caches the last input and output for each convolutional
layer. However, there exists additional overhead as every
convolutional layer have to change the representation of the
matrix.

We evaluate our implementation with UCF101 dataset[17]
which contains 13,421 short videos including 101 types of
human activities. We randomly select 10 types of activities
and evaluate DeltaCNN over them. We use AlexNet[12] CNN
model to verify DeltaCNN. AlexNet is pre-trained on ILSVRC
2012 dataset[15], and transferred learned on UCF101 dataset.
We modified the last fully-connected layer of the model to
classify activity shown on video frame, and all convolution
layers to our own layer in Fig 5. Using the transfer learned
model, we feed the video frames of the validation dataset
sequentially to the RTX TITAN GPU, mimicking the contin-
uous vision application in real world.

Fig 7 shows the evaluation result of DeltaCNN in terms
of average processing latency and accuracy. dense calcu-
lates the original convolution operation without changing
to sparse matrix representation, sparse means convolution
with sparse matrix representation, and sparse_heuristic
applies heuristic to make the input more sparse, which zeros
out the input values below the mean of each channel. As ex-
pected, there is no accuracy drop using the sparse, the accu-
racy of it is same with dense. sparse_heuristic drops the
accuracy significantly about 50% since it changes the input
value and error accumulates more and more by caching the
previous input and output. However, the processing latency
of dense is faster than the sparse and sparse_heuristic.
When the heuristic is applied, it improves the processing
latency than the sparse, but it is still slower than the dense.

We suspected that the PyTorch framework is not efficient
at sparse matrix processing, because it is currently in ex-
perimental stage and not stabilized. The processing time is
slower than the dense even if we input the zero tensor to
the all the convolutional layers.

5.2 SciPy implementation

We test our implementation with SciPy, using stabilized
sparse matrix multiplication API on CPU. We use the same
CNN model and own convolutional layer implementation
using PyTorch in section 5.1. However, when the convolu-
tional layer calculates the matrix multiplication, we copy
the matrices into CPU cache and calculates the result using
SciPy and copy back the result into GPU.

Here, we evaluate with first 1,000 frames of the validation
dataset to show the general trend. Fig 6 shows the aver-
age processing latency of each convolution layer on CPU.
mm_dense means matrix multiplication without changing
to sparse matrix, to_sparse means changing from dense
matrix representation to sparse matrix representation, and

DeltaCNN: Efficient processing of CNN inference for continuous mobile vision

CS530, Fall, 2019, KAIST SoC

‘A’)(II e e e

.
9 x num input channels num filters
o channel 0 values channel 1 values channel 2 values : .
b " Wooo Woo1 Woo2 WooN
e © 0 © xexe1e x1@xll © © © © xeexele xexil © © © 0 x00xele x10 xil Woio Woi1 Woi2 WoiN
© © 0 x00 x01 x02 x10 x11 x12 © © x00 x01 x02 x18 x11 x12 @ © © x00 x01 x62 x18 x11 x12 Wogy Wos1 Wos2 WosN
Wio0 Wip1 W102 wW10N
x@1 x82 x83 x11 x12 x13 @ © © xol x02 x83 x11 x12 x13 8 @ @ x01 x82 x03 x11 x12 x13 Wilg Wi11 Wii2 WIIN
Wigp Wigl Wis2 WisN
oo e - W00 W201 W202 WaoN
w210 W11 W12 w21N
X80 x01 x62 x10 x11 x12 x20 x21 x22 x0@ x01 x02 x10 x11 x12 x20 x21 x22 x80 X8l x02 x10 x11 x12 x20 x21 x22
L L Wagp Wag1 Was2 WasN

Figure 4. Convolution operation with multiple channels and multiple filters

Input

}

A <= Lastinput

Sparse
matrix

v
convolution

<= Last output

A 4

Output

Figure 5. Convolution layer structure of our implementation

mm_sparse means matrix multiplication in sparse matrix rep-
resentation. Thus, the latency for DeltaCNN is to_sparse
+ mm_sparse, and the latency for normal convolution is
mm_dense.

We can observe that the latency for mm_dense is much
shorter than the mm_sparse which even does not account
sparsification overhead, which is identical result with GPU
evaluation (section 5.1). However, the video size of UCF101
dataset is 320 X 240, which is too small to get the benefit
from sparse matrix multiplication.

5.3 Efficiency of sparse matrix multiplication

To test the efficiency of sparse matrix multiplication in ex-
treme environment, we feed the randomly-generated 4K
resolution image (3840 X 2160) to the one layer of our con-
volutional layer with 64 3 X 11 X 11 kernel with different

40.4
401

w
(=]
f

N
o
f

17.3

Processing latency (ms)

o
f

Bmm_dense
Bmm_sparse
Wito_sparse

24.1
8.9
72 7.8 8.1
5.8
14 1.7 1.2

T T
conv1 conv2

T
conv3

T
conv4

T
convb

Figure 6. Processing latency of each convolution layer on

CPU

0.6355
0.6

(%)

0.4

Accurac!

0.01

0.6355

0.1172

T
dense

T
sparse

T
sparse_heuristic

189.65

N N N N
=) o o a
) =] S =]
L f n f

o
=]
n

Processing latency (ms)

o
L

220.81

200.41

T
dense

T
sparse

T
sparse_heuristic

Figure 7. Accuracy and processing latency of pytorch im-

plementation

CS530, Fall, 2019, KAIST SoC

@ 6629.82
£
2080001 5291.72
g
B 4000 3979.82
c
S 2665.81
8§ 20001
= 1354.87
2
@ 106.97 0
Q. 04 ——
0% 20% 40% 60% 80% 99% dense
Sparsity
0.221 0.2243 0.2102
01917
01718
0.1525
0% 20% 40% 60% 80% 99% dense

Sparsity

Figure 8. Processing latency of mm and sparsification of
matrices with different sparsity

sparsity. We report the average latency with 20 trials for
each setting, executing on RTX TITAN GPU.

Fig 8 shows the result in terms of sparsification latency
and matrix multiplication latency. dense means matrix multi-
plication without sparse matrix representation, so it does not
have sparsification overhead. When the sparsity increases,
the sparsification latency and matrix multiplication latency
drops. However, sparse matrix multiplication is much slower
than dense even with 99% sparse matrix.

To get the benefit of sparse matrix multiplication, the in-
put matrix should be much larger so that the number of
required computation is much smaller than dense multiplica-
tion. Unfortunately, the input matrix for continuous vision
multiplication is not large enough to get the advantage from
sparsification, even with 4K resolution.

6 Discussion

In the previous section, we have evaluated the latency of
DeltaCNN in various configurations varying the matrix mul-
tiplication API and the input image size. Our experimental
results show that the processing latency of DeltaCNN which
includes to_sparse (matrix sparsification) and mm_sparse
(sparse matrix multiplication) is much greater than the pro-
cessing latency of the legacy dense matrix multiplication
in the convolution layer. However, we believe that the eval-
uation results do not mean that DeltaCNN is not effective
in reducing the CNN inference latency, since we used im-
plemented third-party APIs for the evaluation and have not
fully investigated on how each functionality is implemented.
We suspect that the latency of dense matrix multiplication
is so small due to various optimization techniques applied
over a long period of frequent usage, while the latency of

Team 11

sparse matrix API is relatively big since it is a newly pub-
lished experimental feature and its implementation is not
fully optimized.

Moreover, when DeltaCNN could be directly applied on
the layer of hardware encoder where I, P, B frames are gener-
ated, DeltaCNN would have more chance of being beneficial
over the legacy convolution process in terms of process-
ing latency. Since matrix sparsification is done on hardware
encoder on both DeltaCNN and legacy process, additional
overhead from the matrix sparsification becomes zero unlike
the experimental results in Section 5. However, input image
size and the average sparsity among images that is required
to have less latency with DeltaCNN is still unveiled, as the
sparse matrix multiplication still takes unnelgigible amount
of overhead. We leave the implementation of DeltaCNN on
the hardware encoder layer and the latency evaluation on
different input size and sparsity as a future work of this
research.

7 Conclusion

The convolutional neural network (CNN) models for continu-
ous mobile vision have recently been widely implemented in
various mobile applications. While it is desired to run CNN
models on mobile devices to avoid exposing privacy-sensitive
mobile data, the processing of complex CNN models on a
mobile device with limited resources became a bottleneck to
ensure the accuracy of the model and QoE. Several studies
were conducted to speed up the processing of the CNN model
on a mobile device, but cutting-edge technology only reaches
a latency of 600ms to 3500ms to process a single image. To
address this problem, we propose DeltaCNN, which is a sys-
tem that efficiently reduces the latency of CNN inference
by taking advantage of the sparsity of intermediate image
frames that is processed at hardware-based encoders and
decoders. From the experimental result, DeltaCNN shows
reduced latency as the matrix sparsity increases, while the
latency of DeltaCNN remains higher than the legacy convo-
lutional layer processing. We expect DeltaCNN latency to be
less than the legacy processing when it is fully implemented
in the hardware-based encoder layer.

References

[1] 2016. Google glass. Retrieved December 8, 2016 from https://developers.
google.com/glass/

[2] 2016. Hololens. Retrieved December 8, 2016 from https://www.
microsoft.com/microsoft-hololens/en-us

[3] 2019. MPEG-2. Retrieved October 28, 2019 from https://en.wikipedia.
org/wiki/MPEG-2

[4] 2019. Windows hello. Retrieved November 27, 2019 from https://www.
microsoft.com/en-us/windows/windows-hello

[5] Sourav Bhattacharya and Nicholas D. Lane. 2016. Sparsification and
Separation of Deep Learning Layers for Constrained Resource Infer-
ence on Wearables. In Proceedings of the 14th ACM Conference on Em-
bedded Network Sensor Systems (SenSys '16). ACM, New York, 176-189.
https://doi.org/10.1145/2994551.2994564

https://developers.google.com/glass/
https://developers.google.com/glass/
https://www.microsoft.com/microsoft-hololens/en-us
https://www.microsoft.com/microsoft-hololens/en-us
https://en.wikipedia.org/wiki/MPEG-2
https://en.wikipedia.org/wiki/MPEG-2
https://www.microsoft.com/en-us/windows/windows-hello
https://www.microsoft.com/en-us/windows/windows-hello
https://doi.org/10.1145/2994551.2994564

DeltaCNN: Efficient processing of CNN inference for continuous mobile vision

(6]
(7]

[10]

[11]

[12]

[13]

Bitmovin 2019. 2019 VIDEO DEVELOPER REPORT. Retrieved Septem-
ber, 2019 from https://go.bitmovin.com/video-developer-report-2019
Tiffany Chen, Hari Balakrishnan, Lenin Ravindranath, and Paramvir
Bahl. 2016. Glimpse: Continuous, Real-Time Object Recognition on
Mobile Devices. GetMobile: Mobile Computing and Communications 20
(07 2016), 26-29. https://doi.org/10.1145/2972413.2972423

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN:
Efficient Primitives for Deep Learning. CoRR abs/1410.0759 (2014).
arXiv:1410.0759 http://arxiv.org/abs/1410.0759

Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. 2016. CryptoNets: Applying
Neural Networks to Encrypted Data with High Throughput and Accuracy.
Technical Report MSR-TR-2016-3. https://www.microsoft.com/en-
us/research/publication/cryptonets-applying-neural-networks-to-

encrypted-data-with-high-throughput-and-accuracy/

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017.
CryptoDL: Deep Neural Networks over Encrypted Data. CoRR
abs/1711.05189 (2017). arXiv:1711.05189 http://arxiv.org/abs/1711.
05189

Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. DeepMon:
Mobile GPU-based Deep Learning Framework for Continuous Vision
Applications. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys °17). ACM, New
York, 82-95. https://doi.org/10.1145/3081333.3081360

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. Ima-
geNet Classification with Deep Convolutional Neural Networks. Com-
mun. ACM 60, 6 (May 2017), 84-90. https://doi.org/10.1145/3065386
Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu,
Youngki Lee, Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa
Song. 2019. Occlumency: Privacy-preserving Remote Deep-learning

[14]

[15]

[16]

[17]

(18]

[19]

CS530, Fall, 2019, KAIST SoC

Inference Using SGX. In The 25th Annual International Conference on
Mobile Computing and Networking (MobiCom ’19). ACM, New York, NY,
USA, Article 46, 17 pages. https://doi.org/10.1145/3300061.3345447
Microsoft Azure Cognitive Services 2019. Microsoft Azure Cognitive
Services. Retrieved July 18, 2019 from https://azure.microsoft.com/en-
us/services/cognitive-services/

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael S. Bernstein, Alexander C. Berg, and Fei-Fei Li. 2014. Ima-
geNet Large Scale Visual Recognition Challenge. CoRR abs/1409.0575
(2014). arXiv:1409.0575 http://arxiv.org/abs/1409.0575

Shan Zhu and Kai-Kuang Ma. 1997. A new diamond search algorithm
for fast block matching motion estimation. In Proceedings of ICICS,
1997 International Conference on Information, Communications and
Signal Processing. Theme: Trends in Information Systems Engineering
and Wireless Multimedia Communications (Cat., Vol. 1. 292-296 vol.1.
https://doi.org/10.1109/1CICS.1997.647106

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012.
UCF101: A Dataset of 101 Human Actions Classes From Videos
in The Wild. CoRR abs/1212.0402 (2012). arXiv:1212.0402 http:
//arxiv.org/abs/1212.0402

Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xu-
anzhe Liu. 2018. DeepCache: Principled Cache for Mobile Deep Vision.
In Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking (MobiCom ’18). ACM, New York, 129-144.
https://doi.org/10.1145/3241539.3241563

Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul Whatmough.
2018. Euphrates: algorithm-SoC co-design for low-power mobile con-
tinuous vision. In Proceedings of the 45th Annual International Sympo-
sium on Computer Architecture (ISCA ’18). ACM, New York, NY, USA,
547-560. https://doi.org/10.1109/ISCA.2018.00052

https://go.bitmovin.com/video-developer-report-2019
https://doi.org/10.1145/2972413.2972423
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
http://arxiv.org/abs/1711.05189
https://doi.org/10.1145/3081333.3081360
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3300061.3345447
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://doi.org/10.1109/ICICS.1997.647106
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1212.0402
https://doi.org/10.1145/3241539.3241563
https://doi.org/10.1109/ISCA.2018.00052

	Abstract
	1 Introduction
	2 Background
	2.1 Video compression
	2.2 Related work

	3 System Overview
	4 DeltaCNN Design Rationale
	4.1 Interpreting the P-frame
	4.2 Addition of CNN
	4.3 Sparse Matrix Multiplication

	5 Implementation & Evaluation
	5.1 PyTorch implementation
	5.2 SciPy implementation
	5.3 Efficiency of sparse matrix multiplication

	6 Discussion
	7 Conclusion
	References

