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Section 1. [Problem 1] hovering task 

Subsection 1. Approach 

When implementing the hovering task, we used two approaches: Soft Actor Critic and 

Curiosity-driven Experience Replay.  

1. Soft Actor Critic (SAC) 

We implemented the Soft Actor Critic (SAC) algorithm for discrete action 

space[2]. Key ideas of SAC are using entropy regularization, and a temperature 

parameter. Entropy represents the randomness or uncertainty in a probability 

distribution. Through policy entropy maximization, SAC promotes exploration and 

prevents premature convergence. During training, the policy's entropy is adjusted 

according to the predefined target entropy. SAC introduces a temperature 

parameter, α (alpha), to manage exploration and exploitation trade-offs. Higher 

values of α result in more exploration, while lower values prioritize exploitation. 

We made this temperature parameter as a learnable parameter.  

In addition, SAC utilizes two critic networks and gradient clipping to 

prevent overestimation and stabilize the training process. As part of our efforts, 

we also attempted to incorporate the concept of 'Delayed policy update' from 

TD3 into the final model, but it was not able to work well within SAC settings, so 

it was not included. 

2. Curiosity-driven Experience Replay (CER) 

 In conventional reinforcement learning paradigms, random sampling 

strategies are typically employed for replay buffer management. Since the random 

sampling strategy does not explicitly encourage an agent to explore novel 

experiences, in order to maximize the information gain and training speed, we 

instead implemented the Curiosity-driven Experience Replay (CER) algorithm.  

This approach was motivated by various curiosity-driven exploration 

mechanisms [3] that aim to incentivize an agent to seek novel experiences, thereby 

enhancing learning efficiency. Instead of selecting samples randomly, the CER 

algorithm leverages an intrinsic reward system to prioritize samples that provide 



the agent with the most novel information. As such, this strategy could lead to 

more effective learning, especially in complex, non-stationary environments. 

Specifically, we reward the agent for taking actions that lead to states which the 

agent cannot predict well, gauging this by the error of a specifically trained model 

of the environment. We approached this by training a simple predictor model that 

predicts the next state given the current state and action, and used the prediction 

error as an intrinsic reward. We thus promote an environment where the agent is 

incentivized to maximize the predictor's per-sample error on state transitions. 

Assuming the predictor is more accurate on transitions it frequently encounters, 

the agent will prioritize infrequent state transitions, thereby enhancing the agent's 

learning efficiency. 

 We further accelerate the training process by utilizing softmax probability 

and temperature scaling [1]. Specifically, upon computation of prediction errors 

from the predictor, these values in the memory buffer are normalized into 

probabilities via a softmax function. We further ensure that the agent more 

frequently explores novel samples by using a low temperature value, i.e., 0.3, in 

order to sharpen the probability distribution so that samples with higher prediction 

errors get more chance to be selected. 

 In addition, in order to balance exploration and exploitation, we increase the 

temperature value in the later stage of the training phase. This approach ensures 

that, in the latter stages of the training process, the selection paradigm gradually 

approximates uniform sampling, as opposed to primarily curiosity-driven 

exploration. This methodology imparts the model with the ability to transition from 

a highly exploratory initial phase—during which it is incentivized to learn about and 

navigate unfamiliar states—to a subsequent phase where it capitalizes on its 

acquired knowledge for efficient problem-solving. Specifically, after 1200 episodes, 

we set the temperature value as 2.0.  

We also tune the hyperparameters and select the best result. We list the hyperparameter 

spaces we explored below. 

● temperature: [0.3, 0.5, 0.7, 1.0, 1.3, 1.5] 

● memory buffer size: [10000 50000 100000 500000] 



● gradient clipping: [0.1, 0.5, 1.0, 5.0, 10.0] 

The hyperparameter set we selected: 

● temperature: 0.3 

● memory buffer size: 50000 

● gradient clipping: 10.0 
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Subsection 2. Return plot 

 

Subsection 3. Performance ratio 

 



𝑟𝑎𝑡𝑖𝑜 =
𝐸𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝐺!	𝑜𝑓	𝑦𝑜𝑢𝑟	𝑙𝑒𝑎𝑟𝑛𝑒𝑑	𝑝𝑜𝑙𝑖𝑐𝑦	𝑜𝑣𝑒𝑟	100	𝑒𝑝𝑖𝑠𝑜𝑑𝑒

17
=
27.847
17

≃ 1.638	

 

  



Section 2. [Problem 2] landing task 

Subsection 1. Approach 

In the landing task, we used two approaches (Same as problem 1: hovering task): Soft 

Actor Critic and Curiosity-driven Experience Replay.  

1. Soft Actor Critic (SAC; Same as problem 1) 

We implemented the Soft Actor Critic (SAC) algorithm for discrete action 

space[2]. Key ideas of SAC are using entropy regularization, and a temperature 

parameter. Entropy represents the randomness or uncertainty in a probability 

distribution. Through policy entropy maximization, SAC promotes exploration and 

prevents premature convergence. During training, the policy's entropy is adjusted 

according to the predefined target entropy. SAC introduces a temperature 

parameter, α (alpha), to manage exploration and exploitation trade-offs. Higher 

values of α result in more exploration, while lower values prioritize exploitation. 

We made this temperature parameter as a learnable parameter.  

In addition, SAC utilizes two critic networks and gradient clipping to 

prevent overestimation and stabilize the training process. As part of our efforts, 

we also attempted to incorporate the concept of 'Delayed policy update' from 

TD3 into the final model, but it was not able to work well within SAC settings, so 

it was not included. 

2. Curiosity-driven Experience Replay (CER; Same as problem 1) 

 In conventional reinforcement learning paradigms, random sampling 

strategies are typically employed for replay buffer management. Since the random 

sampling strategy does not explicitly encourage an agent to explore novel 

experiences, in order to maximize the information gain and training speed, we 

instead implemented the Curiosity-driven Experience Replay (CER) algorithm.  

This approach was motivated by various curiosity-driven exploration 

mechanisms [3] that aim to incentivize an agent to seek novel experiences, thereby 

enhancing learning efficiency. Instead of selecting samples randomly, the CER 

algorithm leverages an intrinsic reward system to prioritize samples that provide 



the agent with the most novel information. As such, this strategy could lead to 

more effective learning, especially in complex, non-stationary environments. 

Specifically, we reward the agent for taking actions that lead to states which the 

agent cannot predict well, gauging this by the error of a specifically trained model 

of the environment. We approached this by training a simple predictor model that 

predicts the next state given the current state and action, and used the prediction 

error as an intrinsic reward. We thus promote an environment where the agent is 

incentivized to maximize the predictor's per-sample error on state transitions. 

Assuming the predictor is more accurate on transitions it frequently encounters, 

the agent will prioritize infrequent state transitions, thereby enhancing the agent's 

learning efficiency. 

 We further accelerate the training process by utilizing softmax probability 

and temperature scaling [1]. Specifically, upon computation of prediction errors 

from the predictor, these values in the memory buffer are normalized into 

probabilities via a softmax function. We further ensure that the agent more 

frequently explores novel samples by using a low temperature value, i.e., 0.7, in 

order to sharpen the probability distribution so that samples with higher prediction 

errors get more chance to be selected. 

 In addition, in order to balance exploration and exploitation, we increase the 

temperature value in the later stage of the training phase. This approach ensures 

that, in the latter stages of the training process, the selection paradigm gradually 

approximates uniform sampling, as opposed to primarily curiosity-driven 

exploration. This methodology imparts the model with the ability to transition from 

a highly exploratory initial phase—during which it is incentivized to learn about and 

navigate unfamiliar states—to a subsequent phase where it capitalizes on its 

acquired knowledge for efficient problem-solving. Specifically, after 1200 episodes, 

we set the temperature value as 2.0.  

 

We also tune the hyperparameters and select the best result. We list the hyperparameter 

spaces we explored below. 

● temperature: [0.3, 0.5, 0.7, 1.0, 1.3, 1.5] 



● memory buffer size: [10000 50000 100000 500000] 

● gradient clipping: [0.1, 0.5, 1.0, 5.0, 10.0] 

The hyperparameter set we selected: 

● temperature: 0.7 

● memory buffer size: 500000 

● gradient clipping: 5.0 

 

[1] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On calibration of 

modern neural networks. In Proceedings of the 34th International Conference on 

Machine Learning - Volume 70 (ICML'17). JMLR.org, 1321–1330.  
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[3] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell (2017). “Curiosity-

driven exploration by self-supervised prediction”. In: International Conference on Machine 

Learning (ICML). Vol. 2017. 

 

Subsection 2. Return plot 

 

 



Subsection 3. Performance ratio 

 

𝑟𝑎𝑡𝑖𝑜 =
𝐸𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝐺!	𝑜𝑓	𝑦𝑜𝑢𝑟	𝑙𝑒𝑎𝑟𝑛𝑒𝑑	𝑝𝑜𝑙𝑖𝑐𝑦	𝑜𝑣𝑒𝑟	100	𝑒𝑝𝑖𝑠𝑜𝑑𝑒

120
=
172.450
120

≃ 1.437	

 


